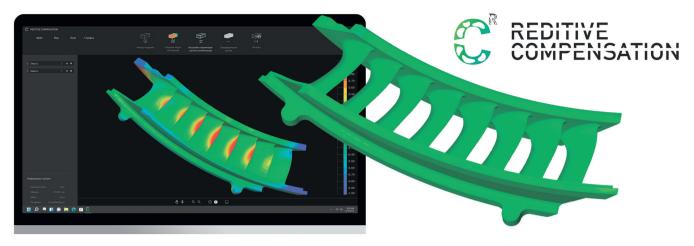

АДДИТИВНЫЕ TEXHOVOLNN

5 шагов для компенсации технологических деформаций

REDITIVE.COMPENSATION


Неплоский слайсинг

Электрохимическая обработка изделий аддитивного производства из металлов и сплавов

АТ в медицине: перспективы ближайшие ориентиры

REDITIVE.COMPENSATION Программное обеспечение для увеличения точности 3D-печати

ООО «КБ РЭДИТИВ»

Аддитивные технологии обладают множеством преимуществ перед механообрабатывающими и формообразующими методами производства. Достоинства 3D-печати заключаются в существенном снижении сроков и упрощении технологической цепочки производства, в возможности оптимизации конструкции и в увеличении эксплуатационных параметров детали.

Однако возникновение технологических деформаций в аддитивном производстве приводит к низкой точности конечных деталей и заготовок. Из-за этого увеличиваются срок, стоимость и трудоемкость их изготовления и постобработки. Таким образом, ключевые преимущества 3D-печати не реализуются.

В этой статье мы расскажем об основных методах предотвращения высоких короблений деталей, а также продемонстрируем собственную разработку для эффективного решения данной проблемы — REDITIVE. COMPENSATION©. Наше программное обеспечение

позволяет быстро и с минимальными усилиями решать проблемы технологических деформаций, как в металлической, так и в полимерной 3D-печати. REDITIVE. COMPENSATION© уже успешно применяется КБ «РЭДИТИВ» для снижения технологических деформаций в аддитивном производстве.

Технологические деформации в процессе аддитивного производства

В большинстве методов 3D-печати технологические деформации возникают из-за неравномерной усадки заготовки. Их интенсивность и неравномерность зависят от ряда факторов:

- тип используемой аддитивной технологии;
- режимы работы конкретной установки;
- конструкция и геометрия детали;
- последующие технологические операции.

Рис. 1. Влияние ПО для предеформации на эффективность аддитивного производства.

Технологических деформаций в процессе 3D-печати избежать невозможно. При этом они негативно сказываются на экономической и технологической эффективности аддитивного производства.

Дополнительный припуск, который может решить эту проблему, увеличивает стоимость и время 3D-печати заготовки, трудоемкость последующей механической обработки и износ инструмента. Технологические деформации на сложнопрофильных элементах конструкции, которые не имеют и не предполагают припуск для механической обработки, негативно влияют на геометрическую точность детали, ее прочность, аэродинамические и другие эксплуатационные характеристики.

Поэтому разработка методов снижения и предотвращения технологических деформаций является важной и актуальной темой для всей индустрии аддитивного производства.

Методы снижения технологических деформаций

На практике реализуются несколько способов предотвращения высоких короблений:

- метод технологической адаптации;
- метод предварительной деформации заготовки, где искажения модели в процессе 3D-печати не уменьшаются, а используются для смещения геометрического профиля до идеальной, номинальной формы. Для применения этого метода создается новая предварительно деформированная (предеформированная или скомпенсированная) модель заготовки.

Способы первой группы заключаются в оптимизации тепловложения и жесткости заготовки за счет ее положения, режимов 3D-печати, специальных конструктивных элементов (силовые пояса и ребра, теплоотводы). Это обеспечивает незначительное снижение короблений, но приводит к увеличению трудоемкости постобработки и удорожанию 3D-печати. Использование данного метода ограничено и не подходит для тонкостенных, сложнопрофильных деталей. Метод предеформации является более эффективным и результативным (рис. 1). Он заключается в изменении исходной модели таким образом, чтобы возникающие в процессе 3D-печати технологические деформации, искажали геометрию детали до идеальной, требуемой формы. Получить предеформированную модель можно при помощи компьютерного моделирования аддитивного процесса или инверсией реальных отклонений.

Предеформация в REDITIVE.COMPENSATION© основана на продвинутых методах обработки результатов отклонений реальных деталей (рис. 2). Создание компенсированной заготовки происходит в несколько этапов:

- загрузка, анализ и выравнивание результатов отклонений (оптическое 3D-сканирование или компьютерная томография, формат STL) и номинальной CAD-модели (формат STL);
- создание и экспорт предеформированной модели. Аналогичным образом происходит компенсация технологических деформаций в программах моделирования аддитивных процессов. Но у них есть ключевое отличие деформированная модель вычисляется на компьютере при помощи специальных численных методов.

На данный момент используются следующие подходы компьютерного анализа 3D-печати: многоуровневое термомеханическое моделирование (ANSYS ADDITIVE©, FLOW-3D AM©, Autodesk Netfabb Simulation©), метод собственных деформаций (Oqton Amphyon©, Materialise Magics Simulation©, Simufact Additive©). Они достаточно корректно определяют деформации заготовок простейших форм, но в сложных случаях точность моделирования, а, следовательно, и эффективность предеформации снижается.

Это происходит из-за накопления ошибок на этапах гомогенизации поддержек (моделирование сложных периодических структур объемными элементами со специальными характеристиками), упрощения началь-

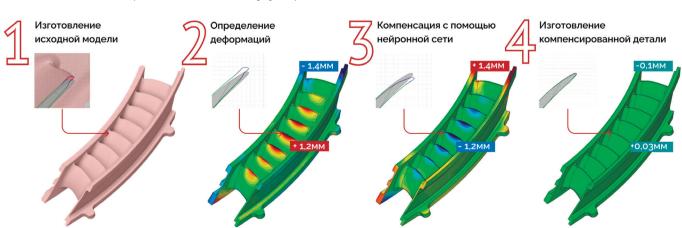


Рис. 2. Этапы компенсации технологических деформаций в REDITIVE.COMPENSATION©.

Рис. 3. Сравнение алгоритмов искажения компьютерной 3D-модели по результатам реальных отклонений, где REDITIVE. COMPENSATION© демонстрирует более точные и гладкие результаты аппроксимации исходных данных.

ных и граничных условий в механическом, тепловом или термомеханическом анализе процесса 3D-печати.

Cpaвнение REDITIVE.COMPENSATION© с конкурирующими решениями и подходами

Помимо нашего решения, метод предеформации по результатам реальных отклонений реализован в Volume Graphics© — программе для анализа и визуализации данных промышленной компьютерной томографии. В ходе тестирования и сравнения ПО на нескольких прикладных примерах мы определили, что REDITIVE. COMPENSATION© корректнее и точнее обрабатывает входные данные и создает предеформированную модель без геометрических ошибок.

Это обеспечивается за счет собственного алгоритма, в основе которого лежат методы машинного обучения, в частности нейронная сеть. Разработанная архитектура нейронной сети определяет общий характер деформации детали. При этом не учитываются локальные де-

фекты как самой заготовки (смещения, шероховатости, остатки от поддерживающих структур), так и дефекты 3D-сканирования (затененные зоны, несплошности, пустоты и другие). Благодаря этому, алгоритм точно вычисляет компенсированное состояние детали, а геометрия предеформированной модели имеет более сглаженные поверхности, чем у конкурентных решений (рис. 3).

В завершение сравнения выделим преимущества метода предеформации и ПО REDITIVE. COMPENSATION©:

- более высокая точность компенсации деформации для сложнопрофильных и крупногабаритных заготовок;
- процесс предеформации сокращается в разы, с нескольких дней до одного часа;
- для создания компенсированной модели не требуются опыт компьютерного моделирования, мощная вычислительная техника, большое количество исходных данных о материале и параметрах процесса;
 - это полностью отечественная разработка.

Рис. 4. Результат предеформации на примере детали «корпус редуктора» (технология изготовления – SLM). Изображение слева – деталь, в центре – ее коробления до компенсации, справа – коробления после компенсации.

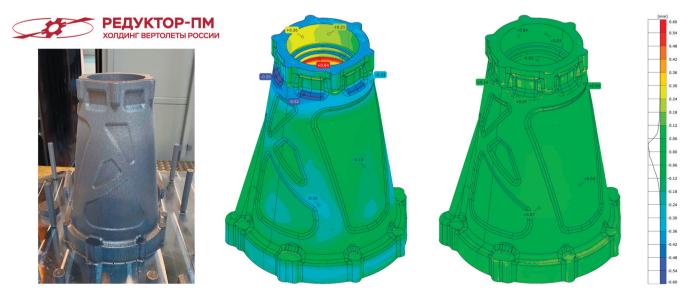
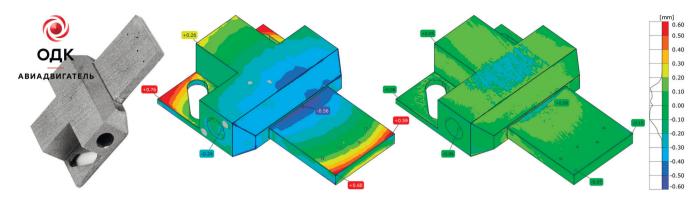



Рис. 5. Результат предеформации на примере детали «корпус датчика» (технология изготовления — SLM). Изображение слева — деталь, в центре — ее коробления до компенсации, справа — коробления после компенсации.

Примеры использования REDITIVE. COMPENSATION©

КБ «РЭДИТИВ» активно использует данный продукт в конструкторско-технологической подготовке аддитивного производства.

Первые пилотные проекты нашего решения: корпуса датчика (рис. 5) и редуктора (рис. 4), которые изготавливались по технологии SLM. Технологические деформации исходных конструкций превышали \pm 0,6 мм. После предеформации, коробления заготовок не превышали \pm 0,1 мм на ответственных поверхностях. Проекты выполнялись по заказу АО «ОДК-Авиадвигатель» и АО «Редуктор-ПМ».

Следующий сложный проект — предеформация крупногабаритных заготовок элемента авиационного двигателя (рис. 6). Первые партии изготавливались по технологии проволочной наплавки из стали, а затем из титана. Из-за больших габаритов (высота заготовки — 900 мм) и сложного геометрического профиля в про-

цессе 3D-печати возникали высокие технологические деформации. Усложняла ситуацию термическая обработка. Она вносила дополнительные несимметричные коробления из-за особого расположения и фиксации заготовки в термопечи.

По завершении 3D-печати и термообработки максимальные технологические деформации титановой заготовки были около 10 мм. Предеформация, выполненная в REDITIVE.COMPENSATION©, позволила снизить технологические коробления до 2 мм. Благодаря этому припуск и, как следствие, материалоемкость заготовки, трудоемкость и стоимость постобработки были существенно снижены.

В результате скорость изготовления конечной детали сократилась с четырех месяцев до нескольких недель. Проект выполнялся по заказу АО «Пермский завод «Машиностроитель».

REDITIVE.COMPENSATION© может использоваться для снижения технологических деформаций и в полимерной 3D-печати. Это подтверждается со-

Рис. 6. Результат предеформации на примере крупногабаритной заготовки (технология изготовления – DED-W). Изображение слева – заготовка, в центре – ее коробления до компенсации, справа – коробления после компенсации.

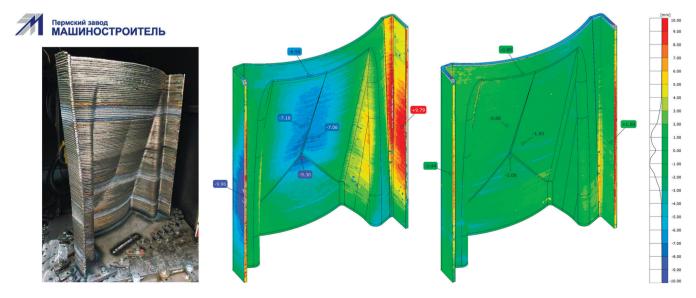
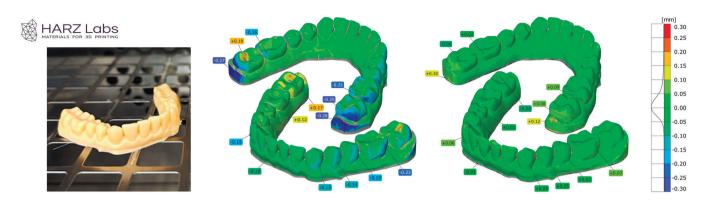



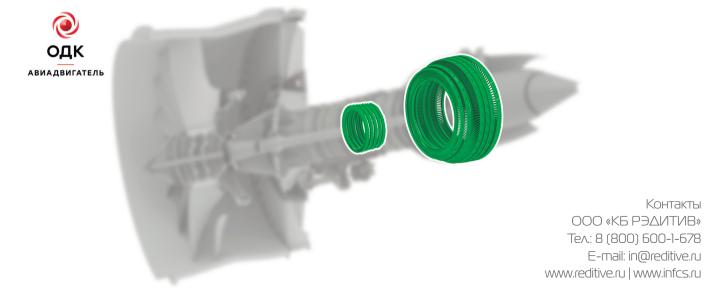
Рис. 7. Результат предеформации на примере стоматологической модели (технология изготовления – DLP). Изображение слева – модель, в центре – ее коробления до компенсации, справа – коробления после компенсации.

вместным проектом с Harz Labs (ведущий российский производитель фотополимеров для DLP/LCD и SLA 3D-принтеров), в котором удалось снизить технологические деформации стоматологических моделей для производства элайнеров более чем в два раза (рис. 7).

Проект, который невозможно реализовать без применения ПО REDITIVE.COMPENSATION©, — компенсация технологических деформаций деталей перспективного авиационного двигателя-демонстратора (рис. 8). Их коробления в процессе SLM 3D-печати были снижены более чем в несколько раз до \pm 0,05 мм. Это позволило запустить стабильное мелкосерийное производство деталей в пределах допуска. Проект выполнялся по заказу АО «ОДК-Авиадвигатель».

Заключение

На большом количестве практических примеров и кейсов мы показали эффективность программного


обеспечения REDITIVE.COMPENSATION©. Это решение имеет множество преимуществ перед прямыми и косвенными конкурентами в лице Volume Graphics©, ANSYS ADDITIVE©, Oqton Amphyon©, Materialise Magics Simulation© и других.

Используя REDITIVE.COMPENSATION© в своем технологическом процессе, вы получите:

- снижение остаточных деформаций и увеличение точности 3D-печати до десяти раз;
- быструю генерацию предеформированных моделей с минимальными усилиями, даже на основе исходных данных с дефектами фасетной сетки;
- снижение себестоимости аддитивного производства.

На сайте КБ «РЭДИТИВ» вы можете детально изучить принцип работы ПО, кейсы, а также заказать услугу по предеформации. Релиз REDITIVE. COMPENSATION© состоится во второй половине 2023 года. ■

Рис. 8. Предеформированные в REDITIVE.COMPENSATION® детали авиационного двигателя-демонстратора.

Официальный дистрибьютор Voxeldance Additive

Voxeldance Additive

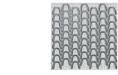
Программное обеспечение для технологической подготовки к 3D-печати

(SLM, DMLS, SLS, SLA, DLP/LCD)

Процесс подготовки данных в Voxeldance Additive

Импорт CAD

Исправление ошибок


Редактирование

Ориентация

Моделирование поддержек

Автоматическая компоновка

Слайсинг

Задание траектории сканирования

Почему **Voxeldance** Additive?

- Удобное и функциональное ПО по более доступной цене
- Все необходимые модули собраны в одном решении. Пользователь может выполнить все этапы подготовки файла к печати в одном программном обеспечении.
- Продуманная система модулей. Алгоритм системы оптимизирован так, чтобы моментально обрабатывать сложные массивы данных.

Для заказа тестовой лицензии обратитесь к официальному дистрибьютору Voxeldance в РФ - ИННФОКУС

in@infcs.ru 8 800 222 77 59 voxeldance-russia.ru

